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On the equivalence theorem for S-matrix elements 

B. W. KECK and J. G. TAYLOR 
Physics Department, University of Southampton, Southampton, SO9 SNH, 
England 
MS.  receioed 22nd June 1970, in reoisedform 21st September 1970 

Abstract. We attempt to prove the equivalence theorem for S-matrix elements. 
We distinguish between the dynamical aspect-which ensures that the dynamics 
is coordinate-independent, and requires care in preservation of the order of 
noncommuting operators-and the kinematical aspect, which ensures that 
asymptotic fields are unchanged. I t  is the latter condition which causes diffi- 
culty; whilst trivial for the free field we give nontrivial examples which violate 
it. 

1. Introduction 
A great deal has recently been made of the equality of S-matrix elements from 

Lagrangians which are formally related by point transformations of the fields 
(Chisholm 1961, Kamefuchi et al. 1961). I n  particular this has been used in dis- 
cussions of the different Lagrangians giving nonlinear realizations of chiral symmetry 
(Coleman et al. 1969, Weinberg 1968) ; a coordinate-independent formulation of the 
chiral symmetry group has been developed by Barnes and Isham (1970) by means of a 
geometric approach. This has proved of importance in discussing the large momen- 
tum transfer behaviour for nucleon electromagnetic form factors (Martin and Taylor 
1970), and in the formulation of non-abelian gauge theories (Salam and Strathdee 
1970). I t  is evidently desirable to have a proof that S-matrix elements are indeed 
invariant under point transformations of the fields. This paper is devoted to a dis- 
cussion of this problem. 

The  original statement and proof of this invariance, the equivalence theorem, 
was given by Chisholm (1961). This was amended and extended by Kamefuchi e t  al. 
(1961), who made extensive use of certain asymptotic conditions for powers of an 
interacting field. Whilst these were weaker than those used by Chisholm, they still 
contained assumptions which interactions might not satisfy. An alternative proof 
by field theoretic functional methods has been recently suggested (Salam and 
Strathdee 1970) ; this apparently avoids the problematical conditions of the earlier 
discussions. However, it is apparent that such an approach is applicable to non- 
relativistic quantum mechanical problems; in this situation we will see later that this 
avoidance is illusory. 

Before we go into detail about this situation, which we do in 5 3, we differentiate 
in the next section between the dynamical and kinematical aspects of the problem. 
The  former, trivial in principle, is that the dynamical development is independent 
of the coordinates used to describe it. However, we find that this independence is not 
so trivial to preserve in practice, partly owing to problems of ordering of canonically 
conjugate operators. The  kinematical aspect is that of ensuring that the asymp- 
totic fields are preserved under coordinate transformations. We find that this is so 
if a natural normalization condition is satisfied; this condition is different from that 
occurring in previous proofs (Chisholm 1961, Kamefuchi e t  al. 1961, Salam and 
Strathdee 1970). After the discussion promised in 5 3 we consider theories obtained 
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by point transformations of a free field in $ 4 ;  certain of these are shown to satisfy 
the above-mentioned normalization condition. I n  $ 5 we show that the original form 
of the equivalence theorem is indeed valid in the tree graph approximation. In  the 
final section we discuss the relevance of the theorem for chirally symmetric Lagrangians, 
and those with symmetry breaking given by the PCAC hypothesis (Chang and 
Gursey 1967). 

2. Dynamics and kinematics 
We consider in this section the theory of a spinless neutral meson, described by a 

field # ( x ) ;  we are interested in coordinate transformations #(x) --f $(x) = ${t,h(x)>. 
The equivalence theorem (Chisholm 1961, Kamefuchi et al. 1961) states that for a 
large class of suitable functions $ the S-matrix elements for processes in which the 
meson is described by the field coordinate + are the same as those in terms of the 
old coordinates t,h. We recognize that there are two distinct parts to this theorem. 
One is concerned with the dynamics, and states that the time development of a 
system of such mesons is independent of the coordinates used to describe it. I n  
other words, the Green functions (01 T[$(x,) ... +(xn)]10}, where IO} is the vacuum 
state and T the usual time ordering symbol, can be calculated from a Hamiltonian 
theory in which the Hamiltonian is given either in terms of the field $ or the field #; 
the result is independent of which choice is made. This point is not trivial to ensure 
in practice owing to the problems of ordering of products of field operators and their 
time derivatives. This is especially so for interactions involving field derivatives, 
leading to apparently noncovariant expressions. For derivative coupling of vector 
mesons Matthews { 1949) showed that covariance is obtained by a modified time 
ordering in which derivatives of fields are to be taken after the time ordering. How- 
ever, this result may not apply to the more general situation, when high powers of 
time derivatives of the field may occur in the interaction; one of us (B.W.K.) has 
shown that this is still true in certain cases in low orders of perturbation theory, We 
will not discuss this further here, since we are mainly concerned with principle in 
this paper. 

The  kinematic aspect is that of ensuring that the asymptotic fields are unchanged 
under the coordinate transformation. I n  other words, we require 

where the asymptotic limit is weak. This condition can be derived from 

where j 1, p )  is a one-particle state of momentum p ,  and energy p 0  = (m2 +p2)llZ, 
m being the particle mass. Condition (2) is one of the basic ones in the Haag-Ruelle 
proof (see for example Jost 1965) of the asymptotic condition (1). We prefer that (1) 
be satisfied directly, but we are prepared to settle for (2). What are the conditions 
on 4 in order that either of these conditions be true? In  the earlier work of Kame- 
fuchi et al. (1961) it was claimed that (1) was true if 

$'io} = 1. 

The justification for this can easily be given if it is assumed that 
(3) 
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for then all the terms in +($in (x)} will vanish asymptotically, except for +'(0)$in (x). 

Equation (1) is then satisfied if (3) is true. However, (4) is not necessarily true. T o  
see this we may rewrite the left hand side of (2) at x = 0, using the assumed asymp- 
totic condition for $, as 

out aut 

where K,  = ( n y 2 + m 2 ) .  If we assume that $ has a Taylor series expansion in its 
variable 

then 
$VI = C a n Z n  

n a o  

(6) 
ma 

A = i 2 a,  j e-iPYKy <oI~E$n(0)$(Y)llO) d4y/ 
n r o  

which graphically has the form of the sum of contributions of self energy type as 
shown in figure 1. We do not expect that the coefficient of a,, n > 1, in A be zero; 

Figure 1. The sum of terms of self-energy character which are equal to the 
normalization constant A of equation (5) .  

in the simple case that $ has a quartic self interaction A$* each coefficient will have a 
power series expansion in powers of X with definitely nonzero coefficients. Since A, 
defined by (j), would be equal to (O~+{$in(0)}~l} if (4) were valid, and so equal to 
$'(O), then we see that a contradiction would arise in such a case. I n  other words (4) 
cannot be valid; its breakdown is due to the single particle states created by the higher 
powers of $ in $($) and which do not enter in $($,J. ?Ve note that the coefficient of 
a,  in A is unity if the asymptotic condition is satisfied by $. 

Returning to (2) at x = 0, we see that the validity of the asymptotic condition for 
$, from the definition ( 5 ) ,  is 

It may be difficult to obtain the asymptotic condition (1) from (2) or equivalently (7) ,  
in the case of $(x) being a polynomial in $ at x, owing to the difficulty of defining 
powers of $(x). However, we expect that an argument on the level of perturbation 
theory (in the interaction picture for $) will allow (1) to be derived from (7) .  

I t  is natural to ask why it is that the earlier condition (3) is not valid, and is 
replaced by (7) .  The  reason for this can be seen in the breakdown of (4): there are 

A = 1. (7)  

Figure 2. A nonzero contribution in perturbation theory to the normalization 
constant A for the case of a quartic self-interaction. 
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single particle contributions in +{$} from the higher powers of $ in the Taylor series 
expansion. Indeed we have given the general form of these contributions in figure 1, 
in terms of Green functions for $. A simple contribution is shown in figure 2, in the 
case of the self interaction of $ possessing a quartic term as we described earlier. 
This and similar contributions do not vanish, as was remarked before, and imply that 
the earlier discussions (Chisholm 1961, Kamefuchi et al. 1961) have to be altered 
by replacing (3) with (7) .  

3. Functional integration 
The recent discussion of the equivalence theorem (Salam and Strathdee 1970) 

appears to avoid the difficulty related to (3) described in the preceding section. We 
will briefly describe the techniques of functional integration used in reference ( 5 )  
to show precisely how the dynamical and kinematical parts of the equivalence theorem 
arise there. The  Green functions for the field 4 have the generating functional 

X 1 Z,(J) = Z,-l nJ dr(5) d+(,, exp [ i 1 d4x{m$ - H1 + J+] 

where H 1  = H1(n-, 4) is the Hamiltonian density for the field + with canonical 
momentum T- and d4(5,, dr(s. are the functional integral measures whose nature 
we make no attempt to specify precisely, and 2, is a constant such that Z,(O) = 1. 
Under the contact transformation (x, $) tf (T, 4) we may rewrite 

where H = H(x,$) is the new Hamiltonian, the functional Jacobian of the trans- 
formation being unity, Since evidently 2, = 2, where 

then 

But this is just the statement of the dynamical aspect of the equivalence theorem; 
it enables the Green functions for the field 4 to be evaluated using the dynamics 
expressed in terms of $. The kinematical aspect of the equivalence theorem emerges 
when it is attempted to use (8) to calculate the S-matrix elements for the field 4 in 
terms of those for $. The Green functions G,(x, ... x,) for 4 are defined as 

so are related to those for $, from (8), by 

where we have assumed that $ ++ is a point transformation. If we assume an 
asymptotic condition for the field + as well as for t,b we may obtain, from (9) and the 
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Taylor expansion of 4, the on-mass-shell S-matrix elements for +, without the no- 
scattering terms, using the standard reduction procedure 

So($, . . . p , )  = n( - p t 2  +m2)  dxi e iP~s~ Go(%, ... x,) 
i T 

The pole contributions on the right hand side of (10) can be written in terms of 
the S-matrix elements for y5 as AnS,(p, . . . p , ) .  We see at this point that the spectrum 
of the two theories must coincide; this is certainly to be expected. What is more, if 
the S-matrix elements for $ satisfy the usual unitarity conditions then it will not be 
possible for the S-matrix elements for + to satisfy the same conditions. In  other 
words, in order that the S-matrix elements for + also be unitary we have to require 
A = 1; this is the first condition (7). Of course, if S is identically one, the ‘free 
field’ case, then any value of A will be satisfactory. This case is trivial, because all 
the on-mass-shell S-matrix elements given by (10) are identically zero. We see then 
that the kinematical aspect of the equivalence theorem remains unchanged by using 
functional integral methods. 

What about the dynamical aspects of the theorem? It is here that the functional 
integral formulation of quantum field theory (and of quantum mechanics also) hides 
the real problem. We can see this in particular for the quantum mechanical motion 
of a particle in one dimension. The ambiguity of ordering arising in the case of a 
Hamiltonian such as +q2p2 can readily be seen to arise from different ways of calcu- 
lating approximants to the integrands of the functional integrals, in particular approxi- 
mants to p. This means that the problem of translating the dynamics from one set of 
coordinates to another in the Hamiltonian formalism is no less trivial in the functional 
integral formalism than it was in the operator formalism. 

4. The free field 
We will discuss this as a model for which the transformations satisfying the condi- 

tion (7) can be determined (although condition (2) is no longer necessary, as was 
remarked in the last section). Using only the canonical commutation relations for 
the field y5, 

A = i J d4x eips ( 0  I T[+{y5(O)}$J(x)I10 ) ] p a =  ma + (0 [+’{y5(O))IO ) (11) 

where $ = ( U  + m2)#. For the free field case $ = 0 so 

if we take + to be normally ordered (in $) then 4’ defined by 

is also normally ordered (in $). Hence A = +’{O}, and condition (7) reduces to the 
original condition (3). 
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5. Equivalence theorem for tree graphs 
The tree graph approximation is the only one for which numerical calculations have 

been made from chiral Lagrangians. I t  is possible to show that for this approximation 
the original form of the equivalence theorem is valid. 

We use the argument due to Lee and Nieh (1968). Define a new Lagrangian 

where 9($, 2#) is the original Lagrangian, and a new transformation 

1 
# -+ $0 = fd#) = -f(c$>. 

C 

Let dt(4, 84) = 9($, a+) be the Lagrangian written in terms of the transformed 
field 4 = f(#). Then the Lagrangian for the transformed field +, will be given by 

which is in fact equal to 
..'dc(+c, a 4 c >  = PC($, 

1 
C2 
- J q c 9 c  , c84c). 

W e  now assume that 

where the left hand side of (12) is calculated from zac, the right hand side from Ac. 
Provided the order of noncommuting terms going from A?c to Ac is preserved, 
this will be true. Now the tree graph contribution to both sides of (12) is the term 
of lowest order in c (Lee and Nieh 1968), so they must be equal. In  the evaluation 
of mass-shell S-matrix elements, we see from figure 1 that the only term of A that is 
retained in the tree approximation is tz = 1, that is, in the tree approximation A = a,, 
so the condition A = 1 becomes al = 1, which is the original form of the equivalence 
theorem. 

6. Equivalence for chiral theories 
As remarked in the introduction there has been a great deal of use of the equiva- 

lence theorem in theories which are chirally invariant or in which this is broken to give 
PCAC. Of course originally this involved only equivalence for tree graphs, but there 
has been great interest recently in true nonpolynomial Lagrangian theories (Pro- 
ceedings of the 15th High Energy Physics Conference, Kiev 1970). We have not been 
able to prove it except for the tree graph approximation. However, the equivalence 
theorem is not relevant when PCAC is imposed; the choice of coordinates for the 
chirally invariant part of the Lagrangian determines the symmetry breaking term 
but not in a coordinate-invariant fashion, that is, the new Lagrangian, still satisfying 
PCAC, is not obtained from the original one by a coordinate transformation. This 
can be seen for example by explicit analysis (Chang and Gursey 1967); it is also 
apparent from the inequality of the T-T scattering lengths calculated in different 
coordinate frames (Chang and Gursey 1967). However, in the zero mass pion limit 
these scattering lengths become coordinate-independent again, in the tree approxima- 
tion, as is to be expected from the discussion of $ 5 .  
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Whilst it would be preferable to have a general proof of the applicability, or not, 
of the theorem to the commonly used transformations, it is evident that the inequiva- 
lent results when PCAC is satisfied reduce its physical importance. Indeed, it would 
appear that nature has somehow chosen a particular coordinate frame in which to 
perform its mysteries. This raises the questions as to what reasons can guide us 
towards choosing this frame and what it actually is. An interesting suggestion has 
recently been made by Charap (1970) that there is a unique coordinate frame in 
which the divergences of chiral invariant meson theory cancel, and the self mass of 
the pion is zero. It would certainly be convenient if nature had chosen this coordinate 
frame since not only would finite results be obtained but also a unique form for the 
symmetry-breaking PCllC terms and so for T--X scattering lengths. I t  may well be 
that such cancellation is the only way to obtain finite results for chirally invariant 
meson theories. We hope to return to this elsewhere. 
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